

IISE*

Contents

T110 Industrial bimetal thermometer
T111 Industrial bimetal thermometer
T112 Hermetically sealed case bimetal thermometer
T114 General service bimetal thermometer
T120 Process industry bimetal thermometer
T123 Sanitary bimetal thermometer (3-A Marking)
T140 Process industry bimetal thermometer
T150 Euro gauge Bimetal thermometer
T190 Process industry bimetal thermometer with adjustable stem
T191 Hermetically sealed case bimetal thermometer with adjustable stem
T210 Remote reading thermometer
T212 Remote reading thermometer with aluminium case
T213 Remote reading thermometer with for external mounting on pipes and tanks
T219 Liquid filled remote reading thermometer
T220 Direct reading thermometer
T222 Direct reading thermometer with aluminium case
T229 Liquid filled direct reading thermometer
T230 Euro gauge Remote reading thermometer
T239 Euro gauge Liquid filled remote reading thermometer
T240 Remote reading thermometer with full compensation
T250 Euro gauge Direct reading thermometer
T259 Euro gauge Liquid filled direct reading thermometer
T263 Heavy duty service remote reading thermometer
T290 Direct reading thermometer with adjustable stem
T359 Safety pattern type direct reading thermometer solid-front turret style thermoplastic case
T360 Safety pattern type remote reading thermometer solid-front turret style thermoplastic case
T400
T501,T502,T503,T504,T505 T511,T512,T513,T514,T515 T521,T522,T523,T524,T525,T52 T531,T532,T533,T534,T535,T536

T711,T712,T713,T71
T721,T722,T723,T724
T751,T752,T753,T754 Glass thermometer
Euro gauge Inductive contact type temperature gauge (Modular system)
Euro gauge Inductive contact type bimetal temperature gauge (Modular system)
Euro gauge Electrical contact type temperature gauge
Euro gauge Electrical contact type bimetal temperature gauge Remote reading aluminium case thermometer with electrical contact Direct reading aluminium case thermometer with electric contact

T761,T762,T763,T764 Bimetal thermometer with electrical contact

T930 Temperature recorder (Case compensation system)
T931,T932 Indicating temperature switch
T941,T942 Weatherproof temperature switch
T953 Explosion proof temperature switch

592 ।

Temperature measurement

Bimetal thermometers

Principle:

When a metallic element is submitted to temperature changes, its length varies.
This physical property has been used and developed to build temperature sensitive bimetallic measuring devices.
The bimetallic sensor is made of two coils twisted together, and welded at their end being selected on purpose with very different thermal expansion coefficients, the two materials will generate a torque at their free end when submitted to temperature changes.

Applications:

- Designed for standard industrial uses, bimetal thermometers are mainly used because :
- They are easy to install and use
- They are more rugged than glass thermometers
- No power supply required
- Fairly large temperature range covered

Gas expansion thermometers

Principle :

A gas actuated thermometer is made of a cylindrical bulb filled with gas at high pressure (nitrogen) connected to a pressure sensitive, pressure gauge type, indicating device. Gas pressure changes inside the bulb due to temperature changes, are sensed by a special helicoid bourdon tube, which, connected to an amplifying device will give the pointer, movement proportional to the temperature.

The physical properties used will enable linear readings on the dial from the origin to full scale.
When the reading is remote from the sensing point, a capillary is then used for transmission between the bulb and the thermometer head. Capillary armoring is common practice in industrial environments.

Applications:

Gas expansion thermometers give a 1% accuracy, which is maintained at ambient temperatures between$10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ due to a built-in temperature compensating device.
Designed for industrial use, where a good accuracy is required, these thermometers are the natural answer because of :

- No need for a power supply
- Possibility for remote reading from temperature source
- Rugged design.

Thermal system

Operating principle		Volumetric principle			
Type and class		Liquid filled system class I		Mercury filled system class V	
		Class IA	Class IB	Class VA	Class VB
Low temp. limited		$\begin{gathered} -300^{\circ} \mathrm{F} \\ \left(-184.4^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		$\begin{gathered} -38^{\circ} \mathrm{F},-65^{\circ} \mathrm{F} \\ \left(-38.9^{\circ} \mathrm{C},-53.9^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	
High temp. limited		$\begin{gathered} 600^{\circ} \mathrm{F} \\ \left(315.6^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		$\begin{gathered} 1,200^{\circ} \mathrm{F}, 600^{\circ} \mathrm{F} \\ \left(648.9^{\circ} \mathrm{C}, 315.6^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	
Longest span		$\begin{gathered} 600^{\circ} \mathrm{F} \\ \left(315.6^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		$\begin{gathered} 1,000{ }^{\circ} \mathrm{F}, 600^{\circ} \mathrm{F} \\ \left(537.8^{\circ} \mathrm{C}, 315.6^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	
Shortest span		$\begin{gathered} 25^{\circ} \mathrm{F} \\ \left(-3.9^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		$\begin{gathered} 40^{\circ} \mathrm{F} \\ \left(4.4^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	
Bulb size	Long span	Smallest		Intermediate	
	Short span	Intermediate		Large	
Dial or chart division		Equal	Equal	Equal	Equal
Max. capillary length		Approx 61 m	Approx 4.5 m	Approx 67.1 m	Approx 7.6 m
Capillary temperature compensation		Dual capillary and bourdon	None	Compensated capillary or dual capillary and bourdon	None
Case temperature compensation		Second bourdon	Bimetal strip	Second bourdon	Bimetal strip
Bath elevation error overrange capacity		Negligible varies with length 200% ~ 0 \% range	Negligible 100 \% of range	Generally small 100 \% of range	Negligible 100 \% of range
Speed of response Barometric error		Slowest in water intermediate		Intermediate in water negligible	
		Negligible	Negligible	Negligible	

Operating principle		Volumetric principle	
		Vapor filled system class II	Gas filled system class III
Type and class		Class IIA / B / C / D	Class IIIA / B
Low temp. limited		$\begin{aligned} & -40^{\circ} \mathrm{F} \\ & \left(-40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} -400^{\circ} \mathrm{F} \\ \left(-240^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$
High temp. limited		$\begin{aligned} & 500^{\circ} \mathrm{F} \\ & \left(260^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 1,500^{\circ} \mathrm{F} \\ \left(815.6^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$
Longest span		$\begin{aligned} & 300^{\circ} \mathrm{F} \\ & \left(148.9^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 1,000^{\circ} \mathrm{F} \\ \left(537.8^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$
Shortest span		$\begin{aligned} & 40^{\circ} \mathrm{F} \\ & \left(4.4^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 100^{\circ} \mathrm{F} \\ \left(37.9^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$
Bulb size	Long span	Intermediate	Large
	Short span	Intermediate	Large
Dial or chart division		Large at range top	Equal
Max. capillary length		Approx 61 m	Approx 61 m
Capillary temperature compensation		None necessary	Generally none rarely, dual capillary and bourdon
Case temperature compensation		None necessary	Bimetal strip rarely and second negligible
Bath elevation error overrange capacity		Frequently large generally small	Varies with range up to 300% of range varies widely with bulb diameter
Speed of response		Fastest to intermediate	Usually small
Barometric error		Usually small	

594 |

Class

Volumetric principle	
Class I	Liquid filled system
Class V	Mercury filled system

Pressure principle

Class II Vapor filled system
Class III Gas filled system

Fully compensated liquid, mercury or gas filled thermal system
Case compensated liquid, mercury or gas filled thermal system

- Class IB, IIB or VB - Class IA, IIA or VA - Class IB, IIB or VB

Temperature conversion formula

Fahrenheit temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	Celsius temperature $\left({ }^{\circ} \mathrm{C}\right)$	Absolute temperature
$1.8 \times \mathrm{C}+32$	$\mathrm{C}=\mathrm{K}-273.15$	Kelvin degree $\left({ }^{\circ} \mathrm{K}\right)$ $\mathrm{K}=\mathrm{C}+273.15$

Temperature conversion table

${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$						
-200	-328	65	149	410	770	790	1,454
-180	-292	70	158	420	788	800	1,472
-160	-256	75	167	430	806	810	1,490
-140	-220	80	176	440	824	820	1,508
-120	-184	85	185	450	842	830	1,526
-100	-148	90	194	460	860	850	1,562
-95	-139	95	203	470	878	900	1,652
-90	-130	100	212	480	896	950	1,742
-85	-121	110	230	490	914	1,000	1,832
-80	-112	120	248	500	932	1,050	1,922
-75	-103	130	266	510	950	1,100	2,012
-70	-94	140	284	520	968	1,150	2,102
-65	-85	150	302	530	986	1,200	2,192
-60	-76	160	320	540	1,004	1,250	2,282
-55	-67	170	338	550	1,022	1,300	2,372
-50	-58	180	356	560	1,040	1,350	2,462
-45	-49	190	374	570	1,058	1,400	2,552
-40	-40	200	392	580	1,076	1,450	2,642
-35	-31	210	410	590	1,094	1,500	2,732
-30	-22	220	428	600	1,112	1,550	2,822
-25	-13	230	446	610	1,130	1,600	2,912
-20	-4	240	464	620	1,148	1,650	3,002
-15	5	250	482	630	1,166	1,700	3,092
-10	16	260	500	640	1,184	1,750	3,182
-5	23	270	518	650	1,202	1,800	3,272
0	32	280	536	660	1,220	1,850	3,362
5	41	290	554	670	1,238	1,900	3,452
10	50	300	572	680	1,256	1,950	3,542
15	59	310	590	690	1,274	2,000	3,632
20	68	320	608	700	1,292	2,050	3,722
25	77	330	626	710	1,310	2,100	3,812
30	86	340	644	720	1,328	2,150	3,902
35	95	350	662	730	1,346	2,200	3,992
40	104	360	680	740	1,364	2,250	4,082
45	113	370	698	750	1,382	2,300	4,172
50	122	380	716	760	1,400	2,350	4,262
55	131	390	734	770	1,418	2,400	4,352
60	140	400	752	780	1,436	2,450	4,442

